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Flow in a rotating non-aligned straight pipe 

By J. BERMANT AND L. F. MOCKROS 
The Technological Institute, Northwestern University, Evanston, Illinois 

(Received 18 October 1982 and in revised form 9 March 1984) 

A third-order regular perturbation solution is developed for laminar flow through a 
straight pipe that is rotating about an axis not aligned with the pipe axis. Coriolis 
accelerations produce transverse secondary velocities (similar to  those in flow through 
coiled tubes) and modify the axial-velocity profile. The effects of rotation on the 
velocity fields are shown to depend on two parameters: (i) the product of axial and 
rotational Reynolds numbers, and (ii) the square of the rotational Reynolds number 
itself. Even though their strength increases with increases in parameter magnitudes, 
transverse circulations are qualitatively insensitive to parametric values. The axial 
profile, on the other hand, can be significantly modified by the rotation; the 
zeroth-order parabolic axial profile can be skewed toward the outside, dimpled in the 
centre with maximums on either side of the centreline, or both, depending on the 
values of the two parameters. The modification of the axial-velocity profile has 
important ramifications in the design of heatlmass-transfer devices. 

1. Introduction 
Transverse laminar secondary motions in pipe flow has been the subject of 

numerousstudies (e.g. Dean 1927,1928; Barua 1954,1963; Benton 1956; McConalogue 
& Srivastava 1968; Ito & Nanbu 1971; I to  & Motai 1974; Van Dyke 1978; Manlapoz 
& Churchill 1980; Nandakumar & Masliyah 1982). These secondary flows are of 
particular interest for their effect on heat and/or mass transfer to or from fluids 
flowing axially through the pipes. The laminar secondary motions result in only 
modest increases in axial pressure losses while producing large increases (often by an 
order of magnitude or more) in the rates of heat and/or mass transfer. The present 
paper presents a solution for the flow of a Newtonian fluid through a straight pipe 
that is rotating about an axis oriented a t  an angle a relative to the centreline of the 
pipe. The angular velocity D of the pipe is taken as positive when oriented in the 
a-direction and negative in the opposite direction (see figure 1 ) .  The rotation subjects 
the axially flowing fluid to  centrifugal and Coriolis accelerations. The centrifugal 
acceleration only subjects the fluid to a pseudo body force and does not produce a 
flow disturbance. The Coriolis acceleration, however, produces transverse secondary 
circulations. The solution is a straightforward extension of the regular perturbation- 
series solution given by Barua (1954) for flow in a pipe rotating about an axis 
perpendicular to the pipe axis. Barua, however, was primarily interested in determining 
the friction-loss versus flow-rate relationship, and, as a result, developed the first-order 
and only a portion of the second-order solution. The present solution is carried out 
to third order and is shown to involve two parameters N R N ,  and N i ,  in which 
N ,  = axial Reynolds number = 2a W / v  and N ,  = rotational Reynolds number 
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FIQURE 1 .  Sketch of a rotating non-aligned straight pipe 

= Qa2sina/481+, where a = pipe radius, W = cross-sectional average axial velocity 
and u = kinematic viscosity of the fluid. Besides inducing transverse secondary 
velocities, the rotation alters the axial-velocity profile. I n  the regime where Nt is 
small but N,N, is not, the effect of rotation is to skew the paraboloid profile 
toward the outside, i.e. rotation moves the maximum out along 8 = 90" in figure 1 .  
I n  the regime where N R  Nu is small but Pa is not, the effect of rotation is to reduce 
the centreline velocity and produce an axial-velocity profile with two maxima, one 
along 8 = 0" and one along 8 = 180". If both NRNu and NE are of significant size, 
the axial profile is skewed with two maxima. The first-order term of the series 
produces skewing toward the outside, the second-order term reduces the centreline 
velocity and produces double maxima, and the third-order term tends to negate the 
effect of the first-order term by producing skewing toward the inside. 

2. Governing equations 

coordinates (r*, 8, z*)  fixed to  the rotating pipe (see figure 1) : 
The momentum equations may be conveniently expressed using circular cylindrical 

at,* 2j*a2j* u*v* 1 ap* 
ar* r* a8 r* pr* a8 

u*-+--+-- - -10 0 * Q cos8 sina-2u*Q cosa--- 

aul* 2j*aw* 1 ap* 
u*-+-----=-9 *Q cos8 sina-%u*Q sin8 sina---+v[V*2w*], 

dr* r* a6 p az* (3) 

in which u*, v* and uj* are the velocity components in the directions of r*,  8 and 
z* respectively, p and 1' are the density and the kinematic viscosity of the fluid 
respectively, and V*2 is the Laplacian operator. The terms containing 52 are due to 
Coriolis acceleration. The reduced pressure p* represents the difference between the 
actual pressure p and the centrifugal forces in the rotating system : 

p* = p - $az[ ( z2 + r2 sin2 8)  sinZ a + r2 cos2 a - 2rz cos a sin a cos 8 + 2 Rr sin 8 + R2]. 

(4) 
The equation of continuity may be written as 
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The boundary conditions, no slip at the pipe wall, are 
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(6) u * = v * = w  * - - 0  a t  r* = a ,  

in which a is the radius of the tube. Equation (3) suggests that  p* must be of the 
form z*gl(r*, @)+g,(r*,B). Equations (1) and (2) indicate that gl (r* ,8)  must be a 
constant, say G*. The axial pressure gradient can therefore be written as 

in which G* is positive when the direction of the flow is in the direction of in- 
creasing z*. 

A stream function f* can be defined for fully developed secondary flow : 

Inserting (8a ,b)  into (1) and (2) and eliminating p* yields 

in which V*4 = V*2(V*2) and a[A, B]/a[x,  z ]  indicates the Jacobian. If y* is defined 
as r* cos8, 

then (9) can be written as 

Inserting (7),  (8) and (10) into (3) results in 

Equations (1 1) and (12) may be cast into non-dimensional form by introducing the 
following dimensionless variables : 

f - f * / v ,  w = w*a/v, (13)> (14) 

r = r*/a,  y = y*/a.  (15a,  b )  

They may be then transformed into 

and 

respectively, in which 

and 

SZa2 sin a 
N ,  = 

48u ' 
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G is the K a r m h  number and N ,  is an angular Reynolds number. The boundary 
conditions (6) that  must be satisfied by (16) and (17) are 

(20) 

and sincc the velocity of the fluid must be finite over the cross-section of the pipe 

f a n d w  are bounded in 0 < r ,< 1 and --x ,< 19 ,< 7 ~ .  (21) r a 0 ' a r  

Equations (16), (17), (20) and (21) govern the motion of an incompressible 
Xewtonian fluid flowing steadily through a straight pipe rotating a t  a constant 
angular velocity about an axis that is aligned a t  an angle a with respect to the pipe 
axis. An exact solution to this complex system of equations for N ,  + 0 is not 
available ; asymptotic techniques, however, providc a method for obtaining approx- 
imate solutions for some ranges of the variables. 

The solution to (16) and (17) is the well-known Hagen-Poiseuille flow for the 
limiting case of N ,  = 0, i.e. for the case of no rotation or rotation of a straight pipe 
about a parallel axis ( a =  0"). Thus the appearance of N ,  is what renders the 
governing equations intractable. The N ,  parameter is an angular Reynolds number 
that represents the ratio of Coriolis to viscous or frictional forces. Realistic estimates 
of N ,  arc less than unity, and therefore i t  can be a small parameter under practical 
conditions. The following perturbation analysis results in the approximation of w and 
f valid in the entire pipe cross-section for small value of N,. The analysis is based 
on using N ,  as a perturbation parameter, and a solution is sought of the following 
form : 

( 2 2 )  w = w o ( r ;  G) +N,w,(r, 0;  G ) + N :  w2(r ,  0;  G) +N3, w3(r ,  0;  O ) +  ... 

and 

3. Solution 
Substituting (22) and (23) into (16) and (17) and equating coefficients of powers 

of N, results in a series of relations that enable the successive determination of 
zoo, wl ,  w2, . . . and fl, f 2 ,  f3, . . . . The results of these manipulations are presented without 
including the extensive intermediate calculations. 

The zeroth-order solution, terms of order N:. This represents the case of no rotation 
(or rotation of a straight pipe about a parallel axis, a = O O ) ,  and is simply the flow 
through a stationary straight tube. The governing equation is 

with 

V'W, = -4G, 

wo=O a t  r = l  

(24) 

(25)  

The solution is readily found to be 

W ,  = G(1--r2). (26) 

Equation (26) is the zeroth-order solution to the overall problem of flow in a rotating 
non-aligned straight pipe ; this stationary solution contains no secondary-flow 
patterns. 
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TheJirst correction, terms of order WE. The first approximation to the stream function 
for the secondary flow is determined from the following differential equation : 

Note that  the solution of (27) provides the first term of the stream function for flow 
in a rotating non-aligned straight pipe assuming that the corresponding stationary 
straight pipe solution is known. 

The boundary conditions follow from (20) and (21) : 

and 

(29) -- la'' ,afl - must be bounded in 0 < r < 1 and -n < 8 < X. 
r a6 ar 

The solution is found to be 
f l  = Gr( 1 - r2)2 cos 8. 

The first correction to the primary velocity profile is the solution of 

with 
w l = O  at r = l  

and the condition that 

w1 must be bounded in 0 < r < 1 and -n < 8 < X. (33) 

Note that w1 can be determined assuming that w,, and fi are known. The solution 
of (31) and (32) is 

(34) w1 =-(1-r2)(3-3r2+r4) sine. 

The second correction, terms of order Pa. The second approximation to the stream 

G2r 
24 

function for the secondary flow is found from the differential equation 

which must satisfy the boundary condition 

(35) 

and the condition that 

This term is found to be 

r2(1 -r2)2(17-2r2-r4) sin 28. 
G2 

480 
f =- 
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The second correction to the primary-velocity profile is determined by solving 

with 
w 2 = 0  a t  r = l  

and the condition that 

w 2  must be bounded in 0 < r Q 1 and -IC < 19 Q IC. (41) 

The solution is 

~ 3 ( 1  -r2 4 
) (37 - 32r2 + lor4) - 8G( 1 -r2)3 

5760 

G3r2( 1 - r 2 )  
201 600 

w2 = - 

- (923 - 1457r2 + 958r4 - 302ra + 48r8) cos 28 

+ 2Gr2( 1 - r 2 )  (5- 3r2) cos 28. (42) 

The third correction, terms of order Pa. The third approximation to the stream 
function for the secondary flow is governed by the differential equation 

with 

and the condition that 

-- ,a'3 - must be bounded in 0 < r Q 1 and -IT < 8 % n.  
r a 8  ar 

Since the governing equation is 

V4f3 = h,(r) cos 8+ h2(r)  cos 38 

the solution is expected to  have the form 

f 3 ( r , B )  = g , ( r )  cos8+g2(r) cos38, 

in which 
g,(r)  = g2(r )  = 0 a t  r = 1 ,  

and the conditions that 

-- must be bounded in 0 < r < 1 and -IT Q 8 Q n 
ar ' ar 
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The explicit solution is 
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G( 1 - r2)2  r 

5 f = -  ( + 77 - 42r2 + 9r4) cos 8 3 

~ 3 ~ (  1 - r2 2 - ) ( + 23973 - 2 2 6 0 7 ~ ~  + 15891r4 - 6371r6 + 11 lors- 33r'O) cos 0 
2 822 400 

2 ~ ~ ~ (  1 - r2)2 (4 - r 2 )  cos 38 - 
5 

The differential equation characterizing the third correction to the primary 
velocity profile is 

with 
w 3 = 0  a t  r = l  

and the condition that 

w3 must be bounded in 0 < r < 1 and -n < 6 < x. 
Equation (53)  is of the form 

V2w3 = H,(r )  sin 8+ H,(r )  sin 38, 

and the solution has the form 

w3 = G,(r)  sin8+G2(r) sin38, 

G,(r)  = G,(r) = 0 a t  r = 1 
with 

and the condition that 

Gl(r) ,G2(r)  must be bounded in 0 < r < 1 and --7c < 8 < x. 
The actual solution is found to be 

G2r( 1 - r 2 )  
150 

(548 - 682r2 + 343r4 - 57r6 + 3ra) sin 8 2u3 = - 

(2 150487 - 6 104913r2 + 9 7 -  16907r4 9504533~~ 
~ 4 ( 1 - r 2 ) r  - 
677 376000 

+ 5 877 547P - 2 266 645r'O + 508 715rI2 - 52 765r14) sin 0 

G2( 1 - r2) r3 
2100 

- (134- 81 l r2  + 785r4 - 195r6) sin 38 

G4( 1 - r2 )  r3 
677 376000 

- (48791 - 122464r2+ 138440r4-85000r6 

+ 28400rs -4570r'O + 330r12) sin 38. 
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4. Discussion 
Equations (26), (34), (42) and (60) give the first four terms of the perturbation 

solution (22) for the axial velocity, and (30), (38) and (52) give the first three terms 
of the perturbation soluton (23) for the stream function of the secondary flow. 
Together these give a third-order solution for the flow in a straight pipe that is 
rotating about an axis oriented at an angle a: relative to the pipe axis. The governing 
equations (16) and (17)  had been previously solved for related problems by Barua 
(1954) and Ito & Motai (1974) using similar methods. Barua obtained a partial 
second-order solution for the flow in a straight pipe robating about an axis 
perpendicular to the pipe axis. The present solution shows that the flows are driven 
by the component of the rotation that is perpendicular to the axis of rotation and 
that Barua's solution may be extended to this problem by simply multiplying his 
rotation parameter by the sine of the non-alignment angle. The first-order and the 
parts of the second-order solution that he developed are the same as the similar parts 
in the present solution if a = 90". Ito & Motai (1974) reported a second-order solution 
for flow in a rotating helically coiled tube of negligible pitch. A limiting case of their 
analysis, that of infinite helix radius or zero curvature, defaults to Barua's (1954) 
problem. The terms in their solution for this limiting case agree with the analogous 
terms in the present problem. (It0 & Motai (1974) give their results in terms of a 
parameter that is equal to 192 times N, with a = go", and Barua (1954) used a 
parameter equal to 96 times N ,  with a = go".) 

The flow rate through the pipe may be obtained by integrating w over the 
cross-section. Since the first- and third-order terms of the solution for w are odd 
functions of 8, the flow rate is affected by only the zeroth- and second-order terms. 
Using (22), (26) and (42) in the integration yields 

in which QR represents the flow rate in the rotating non-aligned straight pipe. Since 
the flow rate Qs through a stationary straight pipe is $vaG, the ratio of the rate 
of discharge in a rotating non-aligned pipe to that in a stationary pipe for a specified 
pressure gradient is 

Equation (61) may be transformed into 

NR = C[1-(&+4)N:] 

by defining NR E Reynolds number = 2a W l v ,  in which W is the cross-sectional 
average velocity QE/7ca2. An expression for the dimensionless axial pressure gradient 
G in terms of NR and N,  may be found by inverting (63) and ignoring higher-order 
terms : 

[ (NR + 4 ~ ~ 1  G = N R  1 +  
448 
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The third-order solution, ( 2 2 )  and (23 )  along with (26), (30), (34) ,  (38), (42), ( 5 2 ) ,  
(60) and (64) ,  may be conveniently written as 

= NR{80(r )+[NRNa1  O) + [NRN,]2 [?-;za(r, 6')+&%(r)] 

+ [82b(r> + 4 8 0 ( r ) l  + [NR,Na13 6') +&81(y> d ) ]  

+ [836(r,  + 88,(r, 6')7> (65) 

and 

in which parameter-free expansion coefficients 8, and f, are introduced by factoring 
out the parameter from w ,  and f,, i.e. letting 8, = w,/Gn+l andf, = f,/Gn and using 
(64) to express G in terms of NR and N,. Thus 6, and?, depend on r and 6' only and 
are independent of the flow regime, i.e the relative size of each term in these series 
depends on the magnitudes of the parameters but the shape of each term is always 
the same. The 8,, 8, andfl terms that appear in the second- and third-order terms 
of these series expansions arise as a result of the higher-order terms in the expression 
for G in terms N ,  and Nu. These equations may be written more compactly by 
combining the functions of r and 6' in each term and introducing the tilde - to denote 
the expansion coefficients in this final form (e.g. Go = 8, but G,, = + 4 8 , )  : 

and 

f = [NRNaIJ(l(T,  e)+ [NRNa12f2(r ,  6 ' )+[N€LNa13f3a(r ,  O ) +  "Rsa1 [ N i 1 J ( 3 6 ( y ,  '1, (68) 

in which the functions subscripted a in the second-and third-order terms are the 
coefficients of [ N R N J n ,  whereas the functions subscripted b are the coefficients of 
[NR N,]n-2N;. (Higher-order approximations would produce additional types of 
terms.) Because they each have a- and b-parts that are multiplied by different 
combinations of parameters, the second- and third-order terms can have different 
shapes depending on the magnitudes of the parameters. 

These equations indicate that the velocity fields in a rotating non-aligned straight 
pipe can be expressed as functions of two independent dimensionless parameters : 
N R N a  and NE. The first of these, NRN,,  is analogous to the Dean number that 
characterizes flow through helically coiled tubes with loosely wound coils. It 
represents the ratio of the product of the inertial and Coriolis forces to  the square 
of the viscous forces. The second parameter, N:, represents the square of the ratio 
of the Coriolis to  viscous forces and corresponds to the coil-ratio parameter that  is 
important in the helical-tube problem with tightly wound coils. The flow that arises 
in a rotating non-aligned straight pipe, in fact, is qualitatively similar to the flow 
in a coiled tube. The net flow is a pair of symmetrical screw movements in the two 
halves of the pipe that are divided by the diameter along 6' = go', 270'. 

The infinite series could be viewed alternatively as having three types of terms: 
those that depend on NRN, ,  those that depend on NE, and those that depend on 
products of NR N ,  and NE. If NE is small but NRNa is not, the solution would be a 
series in powers of ATR N,. If N R X ,  is small but NE is not, the solution for w would 
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FIGURE 2. Normalized third-order secondary-flow streamlines for two sets of parameter values. The 
solid lines are for N R N ,  = 5 x The axial flow profile for this case is 
essentially parabolic. The dashed lines are for N R N ,  = 3 and Nu = 0.04. The axial flow profile for 
this case has double maxima located near the centres of the circulations. 

and N i  = 2.5 x 

be a series in powers of N t .  If both parameters are significant, the solution would 
be a double series expansion in N,Na and Pa. Mansour (1983) recently considered 
fully developed steady laminar flow through a pipe that is rotating slowly (small Nu) 
about a line perpendicular to the pipe axis. He has developed a series solution in 
powers of N R N a  and, using computer methods, extended the series to 34 terms. 
Further, he has shown that the series converges for NR Na < 4.3. A similar extended 
series in powers of NE is not, known, nor is an extended double series in powers and 
products of N,Na and Pa. Thus the range of validity of the present third-order 
solution is difficult to estimate. If N: is restricted to values less than 0.04, however, 
the magnitude of the third-order term is always less than the magnitude of the first- 
and second-order terms. Details of the present solution are therefore considered for 
the range N ,  Na < 4 and N", < 0.04. 

The qualitative character of the transverse circulations is essentially independent 
of the parameter values within this range of parameters. Based on considering peak 
values, the second-order term, the 3a-term and the 3b-term in the series for f are 
always less than Syo, 12% and 3% respectively of the first-order term. Thus the 
circulation pattern is fundamentally determined by the first-order term with small 
modifications due to the higher-order terms. Figure 2 shows normalized third-order 
secondary-flow streamlines for two sets of values of N ,  N ,  and Fa. The solid curves 
are the streamlines with N ,  N ,  = 5 x and the dashed curves 
are the streamlines with N R N ,  = 3 and N; = 4 x lop2. I n  the former case the centres 
of the circulations lie about r = 0.45 and very close to B = 0 and 180" and this is the 
pattern due to the first-order term. I n  the latter case the circulation centres are 
slightly off the B = 0, 180" diameter, i.e. more toward the outside of the rotation, and 
are a little more away from the pipe centreline than the former case. The shift is due 
to minor modifications from the higher-order terms, and results in faster secondary 
velocities in the vicinity of the wall and slower secondary velocities in the central 
core. Nevertheless, the qualitative character of the transverse flow is relatively 
unchanged. The relative strength of the secondary velocities will increase with N ,  N ,  
and NE, but the centres of the circulations change little within the range of parameter 
values considered. 

The axial-velocity profile is also altered by the rotation, and the qualitative 
character of the Gn terms is shown in figure 3. Equations (34), (42) and (60) and figure 
3 indicate that the odd-order terms are odd functions of 8 and the even-order terms 

and P, = 2.5 x 
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FIGURE 3. The qualitative shape of the terms d, in the series expansion for the axial velocity: ( a )  
the GI term; ( b )  the d,, term; (c) the d2, term; (d )  the C3, term; ( e )  the GSb term. The peak-to-peak 
magnitudes of these terms, relative to  a Co term of unity, are 7.28 x lo-,, 5.55 x 6.75, 
1.08 x and 1.45 for GI, ds,, dZb, d,, and GSb respectively. 

are even functions of 0. Each term is normalized to  illustrate their shape better. The 
actual peak-to-peak magnitude of the terms, relative to a Go term of unity, is 
7 . 2 8 ~  6.75, 1.08 x lop3 and 1.45 for GI, Gza, G z b ,  G3a and G3b 
respectively. The effect of each term in modifying the basic parabolic profile depends, 
of course, not ony on these magnitudes but also on the size of the parameters N ,  N ,  
and N: for the flow. The first-order term N ,  N,G, skews the parabolic profile toward 
the outside of the rotation along 0 = 90". The second-order terms [NEN,]2zZza and 
[Pa] GZb reduce the peak centreline velocity of the parabolic profile and increase the 
velocities near the pipe walls. The a-term boosts the near-wall velocities in an 
approximately axisymmetric manner. The b-term distorts the single axisymmetric 
peak of purely parabolic flow into a diametrically symmetric double maximum with 
the peaks occurring along 6' = 0" and 180°, i.e. toward the sides of the tube. The 

5 . 5 5 ~  
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FIGURE 4. The centre diagram shows the peak-to-peak sizes, relative to a zero-order term of unity, 
of the first-, second- and third-order terms for the axial velocity as functions of N,N, and N'$ Note 
that the a-terms, i.e. the parts of the second- and third-order terms that are powers of NR N x ,  are 
always small relative to the ujl term in this range of N,N,  and N,. The figures in the corners are 
the third-order axial-velocity profiles for the indicated values of the parameters. The extra figure 
to the right of the third-order profile with N,N, = 4 and NZ = 0.04 is the profile calculated using 
only second-order theory. The third-order terms have the effect of negating the skewing to the 
outside that is produced by the first-order term. 

third-order terms [NRNaI3 U"'3a and [NR Nu] [Nil 6 3 b  are qualitatively similar to the 
first-order term except that  they are of opposite signs. They tend to negate the effects 
of G1 and skew the profile toward the inside of the rotation. 

The relative size of each term, as a function of N R N a  and N i ,  is shown in figure 
4. The wl, wZa and w~~ terms are functions of NR Nu only, wZb is a function of N i  only, 
and ws. is a function of both parameters. Note that, within this range of parameters, 
the a-terms are always small. Both 7 0 ~ ~  and U ) Q b ,  however, can be quite significant. 
If Pa is small but NRNa is significant (e.g. flow with slow rotation or a small angle 
of non-alignment), the axial profile is determined by the sum of the w0, uil, wZa and 
zuaa contributions. The wZa and ujQa terms, however, are small compared with the w1 
term, and the axial profile is essentially a parabola skewed toward the outsitlc of 
the rotation. If NRNa is small but NZ is significant (e.g. a low flow rate in a tube 
with rapid rotation and large angle of non-alignment) and axial profile is determined 
by ul0 and wZb and has a double maximum along the diameter on 0 = 0" and 180". 
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I n  this case enough slow-moving wall-fluid is brought to the centreline by the 
transverse circulations that the profile has a minimum rather than a maximum near 
the centreline. If both N,Na and NZ are of significant size the axial profile will be 
skewed and have two peaks, one on each side of the 0 = 90", 270' diameter. Figure 
4 shows the third-order axial profiles for these cases. Also shown on figure 4 is a 
second-order axial profile for the case with N,N, = 4 and N: = 0.04. The effect of 
the third-order correction is to remove the outward skewing effect of the first-order 
term and, in fact, to  produce a slight skewing toward the inside of the rotation. 

These changes in axial profiles can be significant in the performance of heatlmass- 
transfer devices with secondary circulations. Without transverse secondary motions 
the heat or mass transferred to the fluid is concentrated near the walls, while the axial 
convection, and its parabolic profile, is heavily weighted to fluid elements near the 
centreline. Induced transverse circulations enhance the transfer efficiency by 
redistributing some of the heat/mass from near the wall to the high-velocity regions 
near the centre. As shown here, however, the conditions for inducing strong secondary 
flows can cause changes in the axial profile such that the high velocities, under some 
conditions, are relocated to regions of low temperature/concentration in the 
redistributed heat/mass field. If the conditions are such that the axial profile remains 
essentially parabolic the redistribution of heat/mass greatly improves the axial 
transport. I n  some flow regimes, on the other hand, increases in the magnitude 
of the parameters, which increase the strength of the circulations, can actually 
decrease the transfer efficiency by disadvantageously altering the axial-transport 
weighting function, i.e. the axial-velocity profile. For example, the region of low 
temperature/concentration along the diameter through B = 90,270" is moved by the 
secondary circulations from the pipe centreline to  a position between the centerline 
and the wall. If the parameter values are such that w1 is significant, e.g. N R  N ,  large, 
N: small, the axial profile is skewed outward along this diameter and the region of 
highest velocity moves from the centreline to the region of lower concentration 
between the centreline and the wall. Further, with transverse circulations the regions 
of lowest temperature/concentration are located near the circulation centres in each 
half-circle area (see figure 2) (with weak transverse convection, the transfer process 
is by conduction/diffusion only in these regions). As mentioned above, the location 
of these circulation centres (i.e. the regions of lowest temperature/concentration) is 
insensitive to the parameter values. If Fa is relatively large the axial profile is altered 
(see figure 4) such that the maximum axial velocities are located near these regions 
of lowest temperature/concentration. The enhanced transport effect of the transverse 
secondary velocities can be somewhat counteracted, again, by this redistribution of 
axial velocities, since the regions of low temperature/concentration are emphasized 
in the axial convection. 
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